Removing zero Lyapunov exponents in volume-preserving flows

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removing zero Lyapunov exponents in volume-preserving flows

Baraviera and Bonatti in [1] proved that it is possible to perturb, in the Ctopology, a volume-preserving and partial hyperbolic diffeomorphism in order to obtain a non-zero sum of all the Lyapunov exponents in the central direction. In this article we obtain the analogous result for volume-preserving flows. MSC 2000: primary 37D30, 37D25; secondary 37A99. keywords: Dominated splitting; volume-...

متن کامل

The Lyapunov exponents of generic volume preserving and symplectic systems

We show that the integrated Lyapunov exponents of C volume preserving diffeomorphisms are simultaneously continuous at a given diffeomorphism only if the corresponding Oseledets splitting is trivial (all Lyapunov exponents equal to zero) or else dominated (uniform hyperbolicity in the projective bundle) almost everywhere. We deduce a sharp dichotomy for generic volume preserving diffeomorphisms...

متن کامل

Genericity of Zero Lyapunov Exponents

We show that, for any compact surface, there is a residual (dense Gδ) set of C 1 area preserving diffeomorphisms which either are Anosov or have zero Lyapunov exponents a.e. This result was announced by R. Mañé, but no proof was available. We also show that for any fixed ergodic dynamical system over a compact space, there is a residual set of continuous SL(2, R)-cocycles which either are unifo...

متن کامل

Non - Zero Lyapunov Exponents and Axiom

Let f : M → M be a C 1 diffeomorphism of a compact manifold M admitting a dominated splitting T M = E cs ⊕ E cu. We show that if the Lyapunov exponents of f are nonzero and have the same sign along the E cs and E cu directions on a total probability set (a set with probability one with respect to every f-invariant measure), then f is Axiom A. We also show that a f-ergodic measure whose Lyapunov...

متن کامل

On Essential Coexistence of Zero and Nonzero Lyapunov Exponents

We show that there exists a C∞ volume preserving diffeomorphism P of a compact smooth Riemannian manifold M of dimension 4, which is close to the identity map and has nonzero Lyapunov exponents on an open and dense subset G of not full measure and has zero Lyapunov exponent on the complement of G. Moreover, P |G has countably many disjoint open ergodic components.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2007

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/20/4/011